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BOUNDEDNESS OF THE SPECTRA

OF BASE FUNCTIONS FOR NEW SPACES

Hee Chul Pak

Abstract. We investigate the boundedness of the spectrum of a
convex base function for a new function space. The result guaran-
tees the continuity of the Calderón-Zygmund operators on the new
space.

1. Introduction

We have built up a new function space in order to generalize the clas-
sical Lebesgue spaces [2, 3, 4, 5, 6]. The motivation of this research stems

from taking a close look at the Lp-norm: ‖f‖Lp =
(∫
X |f(x)|p dµ

)1/p
of

the Lebesgue spaces Lp(X), 1 ≤ p <∞. It can be rewritten as

‖f‖Lp := α−1
(∫

X
α(|f(x)|) dµ

)
(1.1)

with the base function α as

α(x) := xp.

The main point of this research is to replace base functions α with
various base functions which do not hurt the beauty of Lp-norm (1.1)
too much.

We investigate the continuity and the discontinuity of the Calderón-
Zygmund operators on the new function spaces equipped with various
base functions. For this, in [6], we introduced the concept of the spectrum
(or exponent function) pα of a base function α defined as

(1.2) pα(x) := x
α′(x)

α(x)
.
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For example, the Lebesgue base function α(x) = xp has a point spec-
trum: pα(x) = p with 1 ≤ p <∞. The spectrum has been a touchstone
of identifying the continuity of the singular integrals on those spaces.

In [6], we figure out that the Calderón-Zygmund operators pertain
their continuity on this function space if it has a bounded spectrum
which is far off from the value 1, that is to say, there exist some constants
c1, c2 satisfying

1 < c1 ≤ pα(x) ≤ c2 <∞(1.3)

for almost every x > 0. On the contrary, it is noticed that some sin-
gular integrals of the Calderón-Zygmund type operators may fail to be
continuous on the space if we suppose either 1 or ∞ is accumulated by
the spectrum pα.

In this paper, we present the boundedness (1.3) of the spectrum
for the convex Hölder base functions. Our result together with the
Marcinkiewicz type interpolation theorem in [6] guarantees the continu-
ity of the Calderón-Zygmund operators on those spaces equipped with
the conjugate pair of the convex Hölder base functions.

In the following, (X,M, µ) represents an abstract measure space and
R̄+ = {x ∈ R : x ≥ 0}.

2. Hölder base functions

Notions of Hölder functions have been developed to find appropriate
base functions that permit the Hölder’s inequality. In this section, we
briefly introduce the fundamentals of the Hölder functions - the details
can be found in [2, 5, 6].

A pre-Hölder function α : R̄+ → R̄+ is an absolutely continuous bi-
jective function satisfying α(0) = 0. If there exists a pre-Hölder function
β satisfying

(2.1) α−1(x)β−1(x) = x

for all x ∈ R̄+, then β is called the conjugate (pre-Hölder) function
of α. In the relation (2.1), the notations α−1, β−1 are the inverse
functions of α, β, respectively. Some examples of pre-Hölder pairs are:
(α(x), β(x)) = (xp, xq) for p > 1 with 1

p + 1
q = 1, and

(2.2) (α, β) := (λ ◦A, λ ◦ Ã)

where we set λ(x) = A−1(x)Ã−1(x) for any Orlicz N -function A together

with its complementary N -function Ã.
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The spectrum (or exponent function) pα of a pre-Hölder function α is
defined as

(2.3) pα(x) := x
α′(x)

α(x)
.

A pre-Hölder function α permits a conjugate function if and only if
α satisfies the limit conditions:

(2.4) lim
x→0+

α(x)

x
= 0, lim

x→∞

α(x)

x
=∞

together with the spectrum condition:

(2.5) pα(x) > 1

for almost every x > 0. Also, for (α, β) a pre-Hölder pair, we have

1

pα
(s) +

1

pβ
(t) = 1, α(s) = β(t).

For details, we refer [6].

Let Φ be a two-variable function on R̄+ × R̄+ defined by:

Φ(x, y) := α−1(x)β−1(y).

Then we observe that the equation of the tangent plane T of Φ at a
point (α(a), β(b)) is represented by

T (x, y) =
1

pα

ab

α(a)
x+

1

pβ

ab

β(b)
y + ab θf(2.6)

with θf = 1 − 1
pα
− 1

pβ
. This motivation leads to define the Hölder

functions as follows.

Definition 2.1. Let ~ > 0 be given. A pre-Hölder function α with
the conjugate function β is said to be a Hölder function if for any positive
constants a, b > 0, there exist constants θ1, θ2 and θf (depending on a
and b) such that

θ1 + θ2 + θf ≤ ~
and that a dominating condition

Φ(x, y) ≤ θ1
ab

α(a)
x+ θ2

ab

β(b)
y + ab θf ,(2.7)

holds for all (x, y) ∈ R̄+ × R̄+. A Hölder function α is defined as an
s-Hölder function if we can choose θf = 0 in (2.7).
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For example, any (convex) function satisfying

α(x) :=

{
xp for 0 ≤ x ≤ 1
xq for sufficiently large x

(2.8)

(1 < p, q <∞) is a Hölder function, and so are many variants of (2.8).

For a Hölder function α and a given integrable positive function w
on X, we define

Pα(X,w) :={f | f is a measurable function onX satisfying ‖f‖Pα <∞} ,

where

‖f‖Pα := α−1
(∫

X
α(|f(x)|)w(x) dµ

)
.(2.9)

Without loss of generality, we may assume that the weighted function
w can be chosen to be

∫
X w(x)dx = 1.

Let α be a Hölder function and β be the corresponding Hölder con-
jugate function. Then for any f ∈ Pα(X,w) and g ∈ Pβ(X,w), we
have ∣∣∣∣∫

X
f(x)g(x)w(x) dµ

∣∣∣∣ ≤ ~‖f‖Pα‖g‖Pβ .(2.10)

Hölder’s inequality always incubates the Minkowski type inequality:
for f1, f2 ∈ Pα(X,w), we obtain

‖f1 + f2‖Pα ≤ ~ {‖f1‖Pα + ‖f2‖Pα} .(2.11)

Also, for any constant k ≥ 0 and for f ∈ Pα(X,w), we have

k

~
‖f‖Pα ≤ ‖kf‖Pα ≤ k~‖f‖Pα .

In particular, when ~ = 1, we have the homogeneity:

‖kf‖Pα = k‖f‖Pα .

Quasi-homogeneity of the norm is good enough to exploit estimates for
the existence theory of nonlinear partial differential equations[2, 5] and
to study singular integrals on these genealogical function spaces.

3. Boundedness of the spectrum

In this section we introduce the boundedness of the spectrum for a
pair of convex base functions. The result implies the continuity of the
Calderón-Zygmund operators on those function spaces.
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Theorem 3.1 (Boundedness of the spectrum). Let (α, β) be a convex
Hölder pair and let pα be the spectrum of α. Then there exist some
constants 1 < c1, c2 <∞ satisfying

c1 ≤ pα(t) ≤ c2(3.1)

for almost every t > 0.

Proof. We first show that {pα(t)}t>0 is bounded above. Since α is
convex, we have

tα′(t) ≤
∫ 2t

t
α′(s)ds ≤

∫ 2t

0
α′(s)ds = α(2t) for t > 0.

Hence in order to find a constant c2 > 1 satisfying pα(t) ≤ c2, it is
enough to show that there is a constant c2 > 1 such that α(2t) ≤ c2α(t).
We demonstrate this by a contradiction.

Suppose there exists a sequence {tj}∞j=1 of positive numbers such that

α(2tj) ≥ 2jα(tj)(3.2)

for all j = 1, 2, · · · . We drive a contradiction by violating the Minkowski
type inequality (2.11) for the measurable functions defined, for example,
on the Lebesgue measure space (Rn,M, µ).

Let K be a compact subset of Rn. We set

‖f‖Pα(K) := α−1
(∫

K
α(|f(x)|)w(x) dµ

)
with a constant weighted function w(x) := 1

µ(K) , and choose a sequence

of mutually disjoint, measurable subsets {Kj}∞j=1 of K such that

µ(Kj) =
α(1)µ(K)

2jα(tj)
.

We define

f(x) :=

∞∑
j=1

tj χKj (x), x ∈ K

to obtain

‖f‖Pα = α−1
(∫

K
α(|f(x)|) dµ

µ(K)

)

= α−1

 1

µ(K)

∞∑
j=1

α(tj)µ(Kj)

 = 1.
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On the other hand, from (3.2), one has

‖2f‖Pα = α−1
(∫

K
α(2|f(x)|) dµ

µ(K)

)

≥ α−1
 1

µ(K)

∞∑
j=1

2jα(tj)µ(Kj)

 =∞,

which violates the Minkowski type inequality (2.11). In all, we have
shown that there is a positive real number c2 > 1 with

pα(t) ≤ c2
for almost every t > 0.

Similarly, we can find a positive constant c0 > 1 for which

pβ(t) ≤ c0 for almost every t > 0,(3.3)

that is to say,

β′(t) ≤ c0
β(t)

t
.(3.4)

From the identity (2.1), we get

(3.5) x = β

(
x

α−1(x)

)
or α(x) = β

(
α(x)

x

)
.

Hence we can notice that the condition (3.4) is equivalent to saying

β′
(
α(t)

t

)
≤ c0t.(3.6)

On the other hand, differentiate both sides of the identity (2.1) to have

β−1(x)

α′(α−1(x))
+

α−1(x)

β′(β−1(x))
= 1,

which is equivalent to

(3.7)
β−1(α(t))

α′(t)
+

t

β′(α(t))
= 1.

Then the second identity of (3.5) leads to find

β−1 ◦ α(x) =
α(x)

x
.

Therefore the identity (3.7) is equivalent to

(3.8)
y

α′(x)
+

x

β′(y)
= 1 with y :=

α(x)

x
,
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or

α′(t) = s+ t
α′(t)

β′(s)
, s =

α(t)

t
.(3.9)

Reflecting (3.6) to the identity (3.9), we have

α′(t) ≥ c0
c0 − 1

α(t)

t
,

which implies that

pα(t) ≥ c1
with c1 = c0

c0−1 . The proof is now completed. �

Remark 3.2. The Marcinkiewicz type interpolation theorem in [6]
together with Theorem 3.1 implies that the Calderón-Zygmund opera-
tors are continuous on the corresponding new function spaces equipped
with the conjugate pair of the convex Hölder base functions.
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